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1. Introduction and Motivation

2. Methods

4 Conclusion

Unsupervised Bilingual Lexicon Induction

• Consider two related languages, source and target.

• Given a word in the source language, find a word in the target

language with the same meaning.

• Unsupervised: resources are limited to two corpora, one in

each language, of the same genre (to ensure sufficient

overlap in vocabularies), but no alignment or parallelism.

• Our method extracts a small initial seed and bootstraps to

produce high-quality translations.

• Novel method combines lexical and frequency information to extract a seed lexicon from 

non-parallel corpora.

• Combined with a word-embedding-based bootstrapping method, we have created a fully 

unsupervised bilingual lexicon induction algorithm which outperforms prior work.

• Innovative bi-directional scoring improves results and gives a more robust algorithm.

• Can be applied to low-resource languages – a large text corpus in each language is the 

only requirement.

2.1 Seed Lexicon Extraction

• We assume source and 

target languages are related.

• Related languages typically 

have cognates: words with a 

shared linguistic origin.

• Cognates often have similar 

spelling, frequency, and 

meaning.

• We can use similarity to find 

cognates and build a seed 

lexicon:

• Examine pairs of high-

frequency words: let rw be the 

frequency rank of word w in 

its corpus.

• We tune frequency and 

similarity thresholds on 

development data.

function EXTRACT_SEED(m, p, d):

seed ← Ø

for i from 1 to m do:

s ← source word such that rs = i

for each target word t do:

if  NED(s, t) ≤ d

and |rs - rt| ≤ p

and   s ≠ t then:

seed ← seed    {(s,t)}

return seed

2.2 Translation Matrices

• For each language, source 
and target, word2vec
(Mikolov et al, 2013a) 

creates a vector space;

every word is a vector in the 

space of its language.

• Key idea: learn a linear 

transformation between the 

source and target vector 

spaces.

• Use the seed lexicon pairs 

(u
i
, v

i
) and SGD to train a 

matrix T such that Tu
i
= v

i

• Also train reverse translation 

matrix: T'v
i
= u

i

• Translate source word          

w / vector u: 

𝑠𝑐𝑜𝑟𝑒(𝒖, 𝒗) =
𝑠𝑖𝑚 𝑇 ∙ 𝒖, 𝒗 + 𝑠𝑖𝑚(𝑇′ ∙ 𝒗, 𝒖)
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2.2 Bootstrapping

• The translation 

function induced by 

the seed lexicon 

has low accuracy, 

but it gets some 

words correct.

• Key idea: add high-

scoring (i.e. high-

confidence) pairs to 

the seed lexicon.

• Training data 

expands to cover 

more of the source 

and target 

vocabularies.

• Accuracy of 

translations 

improves.

• Able to identify 

more high-

confidence pairs to 

add to the training 

data.

• Repeat to iteratively 

better translations.

• Fully unsupervised!

3. Experiments

• Data: Europarl

• Language pairs: Spanish-French (ES-FR), English-French (EN-FR), and English-Spanish 

(EN-ES); both directions.

• Development on ES-FR only.

• Evaluation:

• Following Dou and Knight (2013), use GIZA++ (Och and Ney, 2003) to align a parallel 

corpus, use alignment pairs to induce a gold-standard lexicon.

• Source/target vocabularies: 2k most frequent source/target words not found in the seed 

lexicon.

Evaluated against:

• Edit distance baseline.

• Mikolov et al (2013b): one-shot unidirectional translation matrix (same seed and vectors as 

our bootstrapped method).

• Reported results of Haghighi et al (2008) (MCCA)

4. Results

Comparison against Haghighi et al (2008)
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Bootstrapping vs. Mikolov et al. (2013)

Bootstrap Translation Matrix Baseline

Lang-pair Seed size Accuracy 

(%)

ES-FR 206 87.9

EN-FR 191 80.1

EN-ES 239 83.3

FR-ES 214 93.0

FR-EN 210 79.1

ES-EN 252 88.9

Automatic seed extraction: size and accuracy
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